If cosθ+cos2θ+cos3θ=0, then the general value of θ is:
Find the general value of θ:
cosθ+cos2θ+cos3θ=0⇒cosθ+cos3θ+cos2θ=0⇒2cos2θcosθ+cos2θ=0;∵cosA+cosB=2cosA+B2cosA-B2⇒cos2θ(2cosθ+1)=0
Either cos2θ=0 or 2cosθ+1=0
If,
cos2θ=0⇒2θ=2nπ±π2⇒θ=nπ±π4 for n=0,1,2,...
2cosθ+1=0⇒cosθ=-12
⇒θ=(2n+1)π±2π3 for n=0,1,2,...
Hence , value of θ is nπ±π4 or (2n+1)π±2π3for n=0,1,2,...
If sin2θ-2cosθ+14=0, then the general value of θ is
If tan2(θ)-(1+3)tan(θ)+3=0, then the general value of θ is
If tan2θtanθ=1, then the general value of θ is
If tan3θ-1tan3θ+1=3, then the general value of θ is
If sin2θ=14, then the most general value of θ is