wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosθ+cos2θ+cos3θ=0, then the general value of θ is:


Open in App
Solution

Find the general value of θ:

cosθ+cos2θ+cos3θ=0cosθ+cos3θ+cos2θ=02cos2θcosθ+cos2θ=0;cosA+cosB=2cosA+B2cosA-B2cos2θ(2cosθ+1)=0

Either cos2θ=0 or 2cosθ+1=0

If,

cos2θ=02θ=2nπ±π2θ=nπ±π4 for n=0,1,2,...

If,

2cosθ+1=0cosθ=-12

θ=(2n+1)π±2π3 for n=0,1,2,...

Hence , value of θ is nπ±π4 or (2n+1)π±2π3for n=0,1,2,...


flag
Suggest Corrections
thumbs-up
9
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Where Friction?
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon