wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosθ+cos7θ+cos3θ+cos5θ=0, then θ=

A
(2n+1)π2;nZ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(2n+1)π4;nZ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(2n+1)π8;nZ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(2n+1)π16;nZ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
A (2n+1)π2;nZ
B (2n+1)π4;nZ
C (2n+1)π8;nZ
Given that:-
cosθ+cos7θ+cos3θ+cos5θ=0
To find:- θ=?
cosθ+cos7θ+cos3θ+cos5θ=0
(cosθ+cos7θ)+(cos3θ+cos5θ)=0
2cos(θ+7θ2)cos(θ7θ2)+2cos(3θ+5θ2)cos(3θ5θ2)=0[cosA+cosB=2cosA+B2cosAB2]
2(cos4θcos3θ+cos4θcosθ)=0[cos(θ)=cosθ]
2cos4θ(cos3θ+cosθ)=0
2cos4θ(2cos2θcosθ)=0
4cosθcos2θcos4θ=0
cosθ=0 or cos2θ=0 or cos4θ=0
Case I:-
For cosθ=0
θ=(2n+1)π2;nZ.....(1)
Case II:-
For cos2θ=0
2θ=(2n+1)π2
θ=(2n+1)π4;nZ.....(2)
Case III:-
For cos4θ=0
4θ=(2n+1)π2
θ=(2n+1)π8;nZ.....(3)
Hence equation (1),(2)&(3) are the solution of cosθ+cos7θ+cos3θ+cos5θ=0.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon