wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosθ=cosαcosβ, prove that tanθ+α2tanθα2=tan2β2

Open in App
Solution

cosθ=cosαcosβ
cosβ=cosθcosα ......(1)
R.H.S=tan2β2=(1cosβ)2sin2β
(1cosβ)21cos2β=(1cosβ)2(1cosβ)(1+cosβ)
(1cosβ)(1+cosβ)=1cosθcosα1+cosθcosα
=cosαcosθcosα+cosθ
=2sin(α+θ2)sin(αθ2)2cos(α+θ2)sin(θα2)
=tan(θ+α2)tan(θα2)
=L.H.S
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon