If cosθ=cosαcosβ,then tan(θ+α)2tan(θ−α)2 is equal to
tan2α2
tan2β2
tan2θ2
cot2β2
Explanation for the correct option:
Find the value of tan(θ+α)2tan(θ−α)2:
Given, cosθ=cosαcosβ
⇒ cosθcosα=cosβ
Apply componendo and dividendo
⇒cosθ+cosαcosθ-cosα=cosβ+1cosβ-1
Using formulae,
cosC+cosD=2cos(C+D2)cos(C-D2)cosC-cosD=-2sin(C+D2)sin(C-D2)1+cosβ=2cos2(β2)cosβ-1=-2sin2(β2)
⇒2cosθ+α2cosθ-α2-2sinθ+α2sinθ-α2=2cos2β2-2sin2β2
Reciprocal above equation
⇒ sinθ+α2sinθ-α2cosθ+α2cosθ-α2=sin2β2cos2β2
∴tan(θ+α)2tan(θ−α)2=tan2(β2)
Hence, Option ‘B’ is Correct.
If cos(θ-α)=a,sin(θ-β)=b, then a2-2absin(α-β)+b2 is equal to