wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos θ=cosαcosβ1sin α sinβ then tanθ2=tanα2tanβ21tanα2tanβ2.

A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A True
Given

cosθ=cosαcosβ1sinαsinβ

cosθ1=cosαcosβ1sinαsinβ

Applying Compoundo and Dividendo Rule.

1cosθ1+cosθ=1sinαsinβcosαcosβ1sinαsinβ+cosαcosβ

tan2θ2=1cos(αβ)1+cos(α+β)

tan2θ2=sin2(αβ2)cos2(α+β2)

tanθ2=sin(αβ2)cos(α+β2)

tanθ2=sinα2cosβ2sinβ2cosα2cosα2cosβ2sinα2sinβ2

tanθ2=tanα2tanβ21tanα2tanβ2




flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Expressions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon