wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosθ=cosαe1ecosα, then find: (tanθ2+1+e1etanα2)(tanθ21+e1etanα2).

Open in App
Solution

cosθ=cosαe1ecosα
cosθ(1ecosα)=cosαe
cosθecosθcosα=cosαe
eecosθcosα=cosαcosθ
e(cosθcosα1)=cosθcosα
1e=cosθcosα1cosθcosα
1+e1e=cosθcosα1+cosθcosαcosθcosα1cosθ+cosα
=cosθ(1+cosα)(1+cosα)cosα(1+cosθ)(1+cosθ)
=(cosθ1)(1+cosα)(cosα1)(1+cosθ)
=1+cosα1cosα1cosθ1+cosθ
[tan2A=2sin2A2cos2A]
tan2A=11+2sin2A1+2cos2A1=1(12sin2A)1+(2cos2A1)
=1cos2A1+cos2A
=1+e1e=tan2(θ2)tan2(α2)
=±1+e1e=tanθ2tanα2
±(tanα2×1+e1e)=tanθ2
(tanθ2±1+e1etanα2)=0
(tanθ2+1+e1etanα2)(tanθ21+e1etanα2)=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon