wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosθ=cosαe1ecosα then prove : tanθ=±1+e1etanα2.

Open in App
Solution


cosθ=2cos2θ21

cosθ2=±1+cosθ2

cosθ=12sin2θ

sinθ2=±1cosθ2

tanθ2=±1cosθ1+cosθ

tanθ2=±   1(cosαe1ecosα)1+(cosαe1ecosα)

±1ecosαcosα+e1ecosα+cosαe

±(1+e)(1cosα)(1e)(1+cosα)

±1+e1e.1cosα1+cosα

±1+e1etan(α2)

LHS=RHS
Hence proof


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Surface Area of Solids
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon