If cos θ=12(a+1a), and cos 3θ=λ(a3+1a3), then λ=
12
Given:
cos θ=12 (a+1a)cos 3θ=λ(a3+1a3)
Now,
cos3θ=18 [a3+1a3+3a1a(a+1a)]⇒ cos3 θ=18 (a3+1a3+3×2 cos θ)[∵ cos θ=12 (a+1a)]⇒ cos3 θ=18 (cos 3 θλ+6 cos θ)⇒ cos3 θ=18 (4 cos2 θ−3 cos θλ+6 cos θ)⇒ cos3 θ=4 cos2 θ8λ−3 cos θ8 λ+6 cos θ8
On comparing the power of cos3 θ on both sides, we get 1=44λ
⇒ λ=12