If cosθ=35,and π<θ<3π2, find the values of other five trigonometric functions and hence evaluate cosecθ+cotθsecθ−tanθ.
We have,
cosθ=−35, and π<θ<3π5
⇒θ lies in the 3rd quadrant
We know that,
⇒sinθ=±√1−cos2θ
In the 3rd quadrant sin θ is negative and tanθ is positive.
∴sinθ=−√1−cos2θ
=−√1−(−35)2[∵cosθ=−35]
=−√1−925
=−√1625
⇒sinθ=−45
and, tanθ=sinθcosθ=−45−35=45
Now, cosecθ=1sinθ=1−45=−54
secθ=1cosθ=1−35=−53
and, cotθ=1tanθ=143=34
∴cosecθ+cotθsecθ−tanθ=−54+34−53−43
=−5+34−5−43
=−249−3=24×39=16
∴cosecθ+cotθsecθ−tanθ=16