If cos θ=35, show that (sinθ−cotθ)2tanθ=3160
cos θ=35
But cos θ=Adjacent sideHypotenuse side
So Hypotenuse = 5 and Adjacent side = 3
According to Pythagoras theorem,
(Hypotenuse)2=(Opposite side)2+(Adjacent side)2(Opposite side)2=(Hypotenuse)2−(Adjacent side)2(Opposite side)2=52−32=25−9=16Opposite side=√16=4
sin θ=Opposite sideHypotenuse side=45
tan θ=Opposite sideAdjacent side=43
cot θ=Adjacent sideOpposite side=34
sin θ−cot θ2tan θ=45−342×43=16−152083=120×83=3160