wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos θ=cos α+cos β1+cos α cos β, prove that tan θ2=± tan α2 tan β2

Open in App
Solution

We have,

cos θ=cos α+cos β1+cos α cos β

Now,

cos θ=1tan2 θ21+tan2 θ2 1tan2 θ21+tan2 θ2=cos α+cos β1+cos α cos β

by componende and dividendo, we get

(1tan2 θ2)+(1+tan2 θ2)(1tan2 θ2)(1+tan2 θ2)=1+cos α cos β+cos α+cos β(1+cos α cos βcos αcos β) 22 tan2θ2=(1+cos α)(1+cos β)(1cos α)(1cos β) tan2θ2=(1cos α)(1cos β)(1+cos α)(1+cos β)

=2 sin2 α2.2sin2β22cos2 α2.2cos2 β2 tanθ2=±tanθ2.tanβ2


flag
Suggest Corrections
thumbs-up
19
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon