If cos θ=cos α+cos β1+cos α cos β, prove that tan θ2=± tan α2 tan β2
We have,
cos θ=cos α+cos β1+cos α cos β
Now,
cos θ=1−tan2 θ21+tan2 θ2⇒ 1−tan2 θ21+tan2 θ2=cos α+cos β1+cos α cos β
by componende and dividendo, we get
(1−tan2 θ2)+(1+tan2 θ2)(1−tan2 θ2)−(1+tan2 θ2)=1+cos α cos β+cos α+cos β−(1+cos α cos β−cos α−cos β)⇒ 22 tan2θ2=(1+cos α)(1+cos β)(1−cos α)(1−cos β)⇒ tan2θ2=(1−cos α)(1−cos β)(1+cos α)(1+cos β)
=2 sin2 α2.2sin2β22cos2 α2.2cos2 β2⇒ tanθ2=±tanθ2.tanβ2