If (cosθ+isinθ)(cos2θ+isinθ) .... (cosnθ+isinnθ)=1, then the value of θ is
A
2mπn(n+1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4mπ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4mπn(n+1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
mπn(n+1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C4mπn(n+1) We have, (cosθ+isinθ)(cos2θ+isin2θ)... (cosnθ+isinnθ)=1 ∴cos(θ+2θ+3θ+....+nθ)+isin(θ+2θ+3θ+.........+nθ)=1 ⇒cosnn+12θ+isinnn+12θ=1 On comparing the coefficients of real and imaginary parts on both sides; we get cosn(n+1)2θ=1 And sinn(n+1)2θ=0 ∴nn+12∴=2mπ ⇒θ=4mπn(n+1)