wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosθ+isinθ is a root of the equation xn+a1xn1+a2xn1+.......+an1x+an=0, then the absolute value of nr=1arcosrθ= .............

Open in App
Solution

xn+a1xn1+a2xn2+.......+an1x+an=0
1+a1x1+a2x2+.......+an1xn+1+anxn=0
Since, cosθ+isinθ is the root
Therefore, 1+a1(cosθ+isinθ)1+a2(cosθ+isinθ)2+.......+an1(cosθ+isinθ)n+1+an(cosθ+isinθ)n=0
1+a1(cosθisinθ)+a2(cos2θisin2θ)+.......+an1(cos(n1)θisin(n1)θ)+an(cosnθisinnθ)=0
On comparing real parts, we get
a1(cosθ)+a2(cos2θ)+.......+an1(cos(n1)θ)+an(cosnθ)=1
Therefore, nr=1arcosrθ=1
Ans: -1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
De Moivre's Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon