xn+a1xn−1+a2xn−2+.......+an−1x+an=0
⇒1+a1x−1+a2x−2+.......+an−1x−n+1+anx−n=0
Since, cosθ+isinθ is the root
Therefore, 1+a1(cosθ+isinθ)−1+a2(cosθ+isinθ)−2+.......+an−1(cosθ+isinθ)−n+1+an(cosθ+isinθ)−n=0
⇒1+a1(cosθ−isinθ)+a2(cos2θ−isin2θ)+.......+an−1(cos(n−1)θ−isin(n−1)θ)+an(cosnθ−isinnθ)=0
On comparing real parts, we get
a1(cosθ)+a2(cos2θ)+.......+an−1(cos(n−1)θ)+an(cosnθ)=−1
Therefore, ∑nr=1arcosrθ=−1
Ans: -1