wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosθ=cosαcosβ1cosαcosβ, then show that tanθ2 =±tanα2 cotβ2

Open in App
Solution

cosθ=cosαcosβ1cosαcosβ
or, 1tan2θ21+tan2θ2=cosαcosβ1cosαcosβ
or, 1+tan2θ21tan2θ2=1cosαcosβcosαcosβ
or, tan2θ2=1cosαcosβcosα+cosβ1cosαcosβ+cosαcosβ
or, tan2θ2=(1cosα)(1+cosβ)(1+cosα)(1cosβ)
or, tan2θ2=tan2α2cos2β2
or, tanθ2=±tanα2cotβ2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon