If cos(θ-α), cosθ and cos(θ+α) are inHP, then cosθsecα2 equal to
±2
±3
±12
None of these
Explanation for the correct option:
Find the value of cosθsecα2:
Given, cos(θ-α), cosθ and cos(θ+α) are in HP.
Here, a=cos(θ–α),b=cosθ and c=cos(θ+α)
∴cosθ=2cosθ-αcosθ+αcosθ-α+cosθ+α ∵b=2aca+c
=2cos2θcos2α-sin2θsin2α2cosθcosα=cos2θcos2α-sin2θsin2αcosθcosα=cos2θcos2α-1-cos2θsin2αcosθcosα=cos2θcos2α-sin2α+cos2θsin2αcosθcosα
⇒ cosθ=cos2θcos2α+sin2α-sin2αcosθcosα
⇒ cos2θcosα=cos2θ-sin2α ∵sin2θ+cos2θ=1
⇒ sin2α=cos2θ1-cosα
⇒2sinα2cosα22=cos2θ2sin2α2 ∵sin2θ=2sinθ2cosθ2
⇒4sin2α2cos2α2=2cos2θsin2α2
⇒ 2cos2α2=cos2θ
⇒ 2sec2α2=cos2θ
⇒ cos2θsec2α2=2
∴cosθsec(α2)=±2
Hence, Option ‘A’ is Correct.
If sec(θ+α)+sec(θ−α)=2 sec θ, prove thatcos θ=±√2cosα2