If cosθ+secθ=52, then the general value of θ is
nπ±π3
2nπ±π6
nπ±π6
2nπ±π3
Explanation for the correct option:
Step 1. Find the value of θ:
Given, cosθ+secθ=52
⇒ cosθ+1cosθ=52
⇒ cos2θ+1=52cosθ
⇒ 2cos2θ+2=5cosθ
⇒ 2cos2θ–5cosθ+2=0
⇒ 2cos2θ–4cosθ–cosθ+2=0
⇒ 2cosθ(cosθ–2)–1(cosθ–2)=0
⇒ (2cosθ–1)(cosθ–2)=0
⇒ cosθ=12,cosθ=2
Step 2. cosθ=2 is not possible since range of cosθ is [-1,1].
⇒cosθ=12
⇒cosθ=cosπ3
∴θ=2nπ±π3
Hence, Option ‘D’ is Correct.