If cosθ+sinθ=2cosθ prove that cosθ-sinθ=2sinθ
Prove the given expression:
Given,
cosθ+sinθ=2cosθ⇒cosθ+sinθ2=2cosθ2Squaringonbothside⇒cos2θ+2cosθsinθ+sin2θ=2cos2θ∵a+b2=a2+2ab+b2⇒2cosθsinθ=2cos2θ-sin2θ-cos2θ⇒2cosθsinθ=cos2θ-sin2θ⇒2cosθsinθ=cosθ-sinθcosθ+sinθ∵a+ba-b=a2-b2⇒2cosθsinθ=cosθ-sinθ2cosθ∵cosθ+sinθ=2cosθ⇒2sinθ=cosθ-sinθ∴cosθ-sinθ=2sinθ
Hence proved, cosθ-sinθ=2sinθ.