wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosθ+sinθ=2cosθ prove that cosθ-sinθ=2sinθ


Open in App
Solution

Prove the given expression:

Given,

cosθ+sinθ=2cosθcosθ+sinθ2=2cosθ2Squaringonbothsidecos2θ+2cosθsinθ+sin2θ=2cos2θa+b2=a2+2ab+b22cosθsinθ=2cos2θ-sin2θ-cos2θ2cosθsinθ=cos2θ-sin2θ2cosθsinθ=cosθ-sinθcosθ+sinθa+ba-b=a2-b22cosθsinθ=cosθ-sinθ2cosθcosθ+sinθ=2cosθ2sinθ=cosθ-sinθcosθ-sinθ=2sinθ

Hence proved, cosθ-sinθ=2sinθ.


flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon