If cosθ-sinθ=2sinθ, then cosθ+sinθ is equal to
2cosθ
2sinθ
-2cosθ
Step 1. Find the value of cosθ+sinθ:
Given, cosθ-sinθ=2sinθ
square both sides, we get
cos2θ+sin2θ–2sinθcosθ=2sin2θ
⇒ 1–2sinθcosθ=2sin2θ
⇒ 2sinθcosθ=1–2sin2θ ….(i)
Now, consider cosθ+sinθ
Step 2. By Squaring this expression, we get
(cosθ+sinθ)2=cos2θ+sin2θ+2sinθcosθ=1+1–2sin2θ=2–2sin2θ=2(1–sin2θ)=2cos2θ
∴cosθ+sinθ=2cosθ
Hence, Option ‘A’ is Correct.
If cos θ−tan θ=sec θ,then,θ is equal to
Evaluate :cos48°-sin42°
If the equation tanθ+tan2θ+tanθtan2θ = 1 then θ is equal to