wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosθ+sinθ=2cosθ, show that cosθsinθ=2sinθ.

Open in App
Solution

Given sinθ+cosθ=2cosθ...(1)

To prove cosθsinθ=2sinθ

from eq (1) sinθ+cosθ=2cosθ

on squaring both sides we get

(sinθ+cos2θ)=(2cos)2

sin2θ+cos2θ+2sinθcosθ=2cos2θ

sin2θcos2θ+2sinθcosθ=0

sin2θ+cos2θ2sinθcosθ=0

or adding 2sin2θ both sides we get

sin2θ+cos2θ2sinθcosθ=2sin2θ

(sinθ+cosθ)2=2sin2θ

cosθsinθ=2sinθ

Hence, proved

flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon