wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosθ+sinθ=2cosθ, show that cosθsinθ=2sinθ

Open in App
Solution

cosθ+sinθ=2cosθ ... (i)
Let cosθsinθ=k ...(ii)
squaring and adding the two equations , we get
(cosθ+sinθ)2+(cosθsinθ)2=(2cosθ)2+k2
cos2θ+2cosθsinθ+sin2θ+=cos2θ2cosθsinθ+sin2θ=2cos2θ+k2
22cos2θ=k2
k2=2sin2θ
k=2sinθ
cosθsinθ=2sinθ

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon