If cosθ+sinθ=√2cosθ, then cosθ−sinθ= _____
The correct option is A (√2sinθ)
Given,
cosθ+sinθ=√2cosθ
sinθ=√2cosθ−cosθ=(√2−1)cosθ
⇒cosθ=1(√2−1)sinθ
=sinθ1√2−1×√2+1√2+1
=(sinθ)√2+1√22−12
=(sinθ)√2+12−1
∴cosθ=(√2+1)sinθ
cosθ−sinθ=(√2+1)sinθ−sinθ
=√2sinθ+(1−1)sinθ
∴cosθ−sinθ=√2sinθ
Hence, the correct option is A (√2sinθ)