If cosθ+sinθ=√2 sin(90∘−θ), then cos θ−sinθ=
√2 sinθ
cosθ+sinθ=√2 sin(90∘−θ)
cosθ+sinθ=√2 cosθ ....(i)
We know
(cosθ+sinθ)2+(cosθ−sinθ)2=2(cos2θ+sin2θ)
(√2cosθ)2+(cosθ−sinθ)2=2....(cos2θ+sin2θ=1)
2 cos2θ+(cosθ−sinθ)2=2
(cosθ−sinθ)2=2−2 cos2θ
(cosθ−sinθ)2=2(1−cos2θ)
(cosθ−sinθ)2=2 sin2θ
∴cosθ−sinθ=√2 sinθ