wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosθsinθ=2sinθ, prove that cosθ+sinθ=2cosθ.

Open in App
Solution

Given, cosθsinθ=2sinθ
we have to prove that cosθ+sinθ=2cosθ
Now,
cosθsinθ=2sinθ
squaring both sides,
(cosθsinθ)2=2sin2θ
cos2θ+sin2θ2cosθ.sinθ=2sin2θ
cos2θ2cosθ.sinθ=sin2θ
Adding a cos2θ on both sides of the equation we get
2cos2θ2cosθ.sinθ=sin2θ+cos2θ
2cos2θ=sin2θ+cos2θ+2sinθcosθ
2cos2θ=(sinθ+costheta)2
2cos2θ=sinθ+cosθ
2cosθ=sinθ+cosθ
Hence, proved.



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon