wiz-icon
MyQuestionIcon
MyQuestionIcon
7
You visited us 7 times! Enjoying our articles? Unlock Full Access!
Question

If cosθsinθ=2sinθ then show that cosθ+sinθ=2cosθ

Open in App
Solution

Given, cosθsinθ=2sinθ

Squaring on both sides
cos2θ+sin2cotθsinθ=2sin2θ

12cossinθ=2sin2θ

2cosθsinθ=12sin2θ

(cosθsinθ)2=(cosθ+sinθ)24cosθsinθ

(2sinθ)2=(cosθ+sinθ)22(12sin2θ)

(cosθ+sinθ)2=2sin2θ+24sin2θ

(cosθ+sinθ)2=2sin2θ=2(1sin2θ)

=2cos2θ

cosθ+sinθ=2cosθ.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon