If cos θ+√3 sin θ=2,thenθ=
π/3
Given:cos θ+√3 sin θ=2 ...(i)This equation is of the form a cosθ+b sinθ=c,where a=1,b=√3 and c=2Let:a=r cos α,√3=r sinα⇒r=√a2+b2=√1+3=√4=2And,tan α=ba⇒tanα=√31⇒tan α=√3⇒α=π3On putting a=1=r cos α and b=√3=r sin α in equation(i),we getr cosθ cosα+r sinθ sin α=2⇒r cos(θ−α)=2⇒2 cos(θ−π3)=2⇒cos (θ−π3)=1⇒cos (θ−π3)=cos θ⇒θ−π3=2nπ± 0For n=0,=π3∴θ=π3