If cos θ−tan θ=sec θ,then,θ is equal to
nπ+(−1)nπ6,n∈Z
Given equation:cos θ−tan θ=sec θ⇒cosθsinθ−sinθcosθ=1cosθ⇒cos2θ−sin2θsin θ cosθ=1cosθ⇒cos2θ−sin2θ=sinθ⇒(1−sin2θ)−sin2θ=sinθ⇒1−2sin2θ+sinθ−1=0⇒2sin2θ+sinθ−1=0⇒2sin2θ+2sinθ−sinθ−1=0⇒2sinθ(sinθ+1)−1(sinθ+1)=0⇒(sinθ+1)(2sinθ−1)=0⇒sinθ+1=0 or 2sinθ−1=0⇒sinθ=−1 or sinθ=12Now,sinθ=−1⇒sinθ=sin3π2⇒θ=mπ+(−1)m3π2,m∈ZAnd,sin θ=12⇒sinθ=sinπ6⇒θ=nπ+(−1)nπ6n∈Z∴q=nπ+(−1)nπ6,n∈Z