If cosx+cos2x=1. then prove that sin2x+sin4x=1
Prove the given expression
It is given that
cosx+cos2x=1⇒cosx=1-cos2x⇒cosx=sin2x∵sin2x+cos2x=1⇒cosx2=sin2x2Squaringonbothside⇒cos2x=sin4x⇒1-sin2x=sin4x∵sin2x+cos2x=1⇒sin4x+sin2x=1
Hence Proved.
If 1+sin2θ=3sinθcosθ then prove that tanθ=1or12.