If cosx +cos2x=1 then sin12x+3sin10x+3sin8x+sin6x+sin4x+2sin2x−2 is equal to
cosx+cos2x=1
cosx=1−cos2x
cosx=sin2x
now in the given equation we substitute sin2x=cosx
everywhere this gives
=cos6x+3cos5x+3cos4x+cos3x+2cos2x+cosx−2
=cos3x(cosx+1)3+2cos2x+cosx−2
=(cos2x+cosx)3+cosx−2(1−cos2x)
=(1)3+cosx−2cosx
=1−cosx