If cosx+cosy+cosα=0 and sinx+siny+sinα=0, then cot(x+y)2=
sinα
cosα
cotα
sin(x+y)2
Explanation for the correct option:
Step 1. Find the value of cot(x+y)2:
Given, cosx+cosy+cosα=0
⇒ cosx+cosy=-cosα
⇒2cosx+y2cosx-y2=-cosα …..(i)
Also, sinx+siny+sinα=0
⇒ sinx+siny=-sinα
⇒2sinx+y2cosx-y2=-sinα …..(ii)
Step 2. Divide equation (i) by (ii), we get
2cosx+y2cosx-y22sinx+y2cosx-y2=-cosα-sinα
∴cot(x+y)2=cotα
Hence, Option ‘C’ is Correct.
Evaluate :cos48°-sin42°
The differential equation for the equation y = Acos αx + Bsin αx is: