1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Cos(A+B)Cos(A-B)
If cos x+co...
Question
If
cos
x
+
cos
y
+
cos
z
=
0
and
sin
x
+
sin
y
+
sin
z
=
0
, show that,
cos
(
x
−
y
)
=
cos
(
y
−
z
)
=
cos
(
z
−
x
)
=
−
1
2
.
Open in App
Solution
If
cos
x
+
cos
y
+
cos
z
=
0
sin
x
+
sin
y
+
sin
z
=
0
Show that
cos
(
x
−
y
)
=
cos
(
y
−
z
)
=
cos
(
z
−
x
)
=
−
3
2
∵
cos
x
+
cos
y
=
−
cos
z
or,
cos
2
x
+
cos
2
y
+
2
cos
x
.
cos
y
=
cos
2
z
sin
x
+
sin
y
=
−
sin
z
sin
2
x
+
sin
2
y
+
2
sin
x
.
sin
y
=
sin
2
z
Adding both side we get,
(
cos
2
x
+
sin
2
x
)
+
(
cos
2
y
+
sin
2
y
)
+
2
(
cos
x
.
cos
y
+
sin
x
.
sin
y
)
=
cos
2
z
+
sin
2
z
or,
1
+
1
+
2
cos
(
x
−
y
)
=
1
or,
cos
−
(
x
−
y
)
=
−
1
2
Similarly we can prove,
sin
x
+
sin
z
=
sin
y
⟹
sin
2
x
+
sin
2
z
+
2
sin
x
.
sin
z
=
sin
2
y
⟹
cos
x
+
cos
z
=
−
cos
y
⟹
cos
2
x
+
cos
2
z
+
2
cos
x
.
cos
z
=
cos
2
y
adding both we get,
1
+
1
+
2
cos
(
z
−
x
)
=
1
cos
(
z
−
x
)
=
−
1
2
similarly
cos
(
y
−
z
)
=
−
1
2
Suggest Corrections
0
Similar questions
Q.
If
sin
x
+
sin
y
+
sin
z
=
0
=
cos
x
+
cos
y
+
cos
z
,
then find the value of expression
cos
(
y
−
x
)
+
cos
(
z
−
y
)
+
cos
(
x
−
z
)
.
Q.
C
o
s
(
x
−
y
)
+
C
o
s
(
y
−
z
)
+
C
o
s
(
z
−
x
)
=
−
3
5
Find (1)
C
o
s
x
+
C
o
s
y
+
C
o
s
z
=
?
(2)
S
i
n
x
+
S
i
n
y
+
S
i
n
z
=
?
Q.
If
cos
(
y
−
z
)
+
cos
(
z
−
x
)
+
cos
(
x
−
y
)
=
−
3
2
, prove that
cos
x
cos
y
cos
z
=
0
=
sin
x
+
sin
y
+
sin
z
Q.
If
cos
x
+
cos
y
+
cos
z
=
0
=
sin
x
+
sin
y
+
sin
z
, then possible value of
cos
(
x
−
y
)
is
Q.
If cosx =tany, cosy =tan z & cosz =tanx prove that sinx =siny =sinz
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Transformations
MATHEMATICS
Watch in App
Explore more
Cos(A+B)Cos(A-B)
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app