The correct options are
B cosx−y2=±12
C sin2x−y2=34
cosx+cosy+cosz=0
and sinx+siny+sinz=0
⇒cosx+cosy=−cosz
and sinx+siny=−sinz
⇒2cosx+y2cosx−y2=−cosz ⋯(1)
and 2sinx+y2cosx−y2=−sinz ⋯(2)
(1)2+(2)2 gives,
4cos2x−y2cos2x+y2+4cos2x−y2sin2x+y2=cos2z+sin2z
⇒4cos2x−y2[cos2x+y2+sin2x+y2]=cos2z+sin2z
⇒4cos2x−y2=1
∴cos2x−y2=14
⇒cosx−y2=±12
Since cos2x−y2=14,
1−sin2x−y2=14
⇒sin2x−y2=34