wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosx=1t21+t2 and siny=2t1+t2 where t(1,0), then the value of 4d2ydx232dydx12yx at (x,y)=(1,1) is

Open in App
Solution

cosx=1t21+t2
x=cos1(1t21+t2)
Let t=tanθ, where θ(π4,0)
Then x=cos1cos2θ
x=cos1cos(2θ) (2θ[0,π])
x=2θ
x=2tan1t
dxdt=21+t2

siny=2t1+t2
y=sin1(2t1+t2)
y=sin1sin2θ
y=2θ
y=2tan1t
dydt=21+t2

dydx=dy/dtdx/dt
dydx=1
d2ydx2=0
yx=2θ2θ=1

4d2ydx232dydx12yx=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon