cosx=2cosy−12−cosy
⇒1−tan2x21+tan2x2=2(1−tan2y2)1+tan2y2−12−1−tan2y21+tan2y2⇒1−tan2x21+tan2x2=2−2tan2y2−1−tan2y22+2tan2y2−1+tan2y2⇒1−tan2x21+tan2x2=1−3tan2y21+3tan2y2
Applying componendo and dividendo
⇒2−2tan2x2=2−6tan2y2
⇒3tan2y2=tan2x2⇒tan2x2cot2y2=3⇒tanx2coty2=±√3
As x,y∈(0,π), so
x2,y2∈(0,π2)
∴tanx2coty2=√3=k
⇒[k]=1