Step 1: Solve for value of sinx
cosx=−35 and x lies in 3rd quadrant.
⇒sin2x+(−35)2=1
⇒sin2x+925=1
⇒sin2x=1−925
⇒sin2x=1625
⇒sinx=±45
Since, x is in 3rd quadrant and sinx is negative 3rd quadrant.
∴sinx=−45
Step 2: Solve for value of tanx
We know that tanx=sinxcosx
∴tan x=(−45)(−35)=43
Step 3: Solve for value of cosec x
We know that cosec x=1sinx
∴cosec x=1−45=−54
Step 4: Solve for value of secx
We know that secx=1cosx
∴secx=1−35=−53
tan x=43
Step 5: Solve for value of cotx
We know that cotx=1tanx
∴cotx=143=34