The correct options are
B −cotβ2tanα2 C tanα2tanβ2cosx−sinαcotβsinx=cosα
or,1−tan2x21+tan2x2−sinαcotβ2tanx21+tan2x2=cosα
or, 1−tan2x2−2tanx2⋅sinαcotβ=cosα(1+tan2x2)
or,tan2x2(cosα+1)+2tanx2sinαcotβ+cosα−1=0
or, tanx2=−2sinαcotβ±√4sin2α×cot2β−4×(1+cosα)(1−cosα)
or, tanx2=−2sinα+cotβ±√4sin2αcot2β+4sin2α2(1+cosα)
or, tanx2=−2sinαcotβ±2sinαcscβ2(1+cosα)
or, tanx2=−sinαcotβ±2sinαcscβ1+cosα
or, tanx2=−sinαcotβ+sinαcscβ1+cosα
=sinα(cscβ−cotβ)2cos2α2
=tanα2⋅tanβ2
or, tanx2=−(sinαcotβ+sinαcscβ)1+cosα
=−2sinα2⋅cosα22cos2α2×1+cosβsinβ
=−tanα2cotβ2