If cosx−sinαcotβsinx=cosα, then the value of tan(x/2) is
A
−tan(α/2)cot(β/2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
tan(α/2)tan(β/2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
−cot(α/2)tam(β/2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cot(α/2)cot(β/2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are A−tan(α/2)cot(β/2) Btan(α/2)tan(β/2) cosx−sinαcotβsinx=cosα⇒1−tan2(x2)1+tan2(x2)−sinαcotβ2tan(x2)1+tan2(x2)=cosα⇒tan2(x2)(1+cosα)+sinαcotβ⋅2tan(x2)−(1−cosα)=0⇒tan2(x2)+2sinαcotβ1+cosαtan(x2)−1−cosα1+cosα=0⇒tan2(x2)+2tan(α2)cotβtan(x2)−tan2(α2)=0⇒tan2(x2)+2tan(α2)⋅12(cot(β2)−tan(β2))tan(x2)−tan2(α2)=0⇒(tan(x2)+cot(β2)tan(α2))(tan(x2)−tan(β2)tan(α2))=0 ⇒tan(x2)=−tan(α2)cot(x2) or tan(x2)=tan(α2)tan(x2) Hence, options 'A' and 'B' are correct.