Making use of given relations , we have
cos2x=tan2y=sec2y−1=cot2z−1
or 1+cos2x=cos2z1−cos2z=tan2x1−tan2x
or1+cos2x=sin2xcos2x−sin2x
On changing to sin x, we get,
(2−sin2x)(1−2−sin2x)=sin2x
or2sin4x−6sin2x+2=0
orsin4x−3sin2x+1=0
∴sin2x=3±√9−42=3±√52=3−√52
We have reject the value 3+√52 as it is >1
or sin2x=6−2√54=(√5−12)2
∴sinx=√5−12=2.√5−14=2=sin18∘
By Symmetry we can say that,
sin x = sin y = sin z = 2sin18∘