wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

If cos xy=tan yx, prove that dydx=log tan y+y tan xlog cos x-x sec y cosec y

Open in App
Solution

We have, cos xy=tan yx
Taking log on both sides,
logcosxy=logtanyxy log cosx=x log tany
Differentiating it with respect to x using chain,
ddxy log cosx=ddxx log tanyyddxlog cosx+log cosxdydx=xddxlog tany+log tanyddxxy1cosxddxcosx+log cosxdydx=x1tanyddxtany+log tanyycosx-sinx+log cosxdydx=xtanysec2ydydx+log tany-ytanx+log cosxdydx=secy cosecy×xdydx+log tanydydxlog cosx-x secy cosecy=log tany+y tanxdydx=log tany+y tanxlog cosx-xsecy cosecy

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sine Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon