If cosy=xcos(a+y), with cosa≠±1, prove that dydx=cos2(a+y)sina
Open in App
Solution
We have, cosy=xcos(a+y)→(1) Differentiate both sides w.r.t. x −sinydydx=cos(a+y)−xsin(a+y)dydx ⇒dydx=cos(a+y)xsin(a+y)−siny=cos(a+y)cosycos(a+y)sin(a+y)−siny =cos2(a+y)cosysin(a+y)−sinycos(a+y)=cos2(a+y)sina Since sin(A−B)=sinAcosB−sinBcosA