If cos y=x cos (a+y),with cos a≠1,prove that dydx=cos2(a+y)sin a.
Given, cos y = x cos(a+y) ⇒ x=ycos(a+y)
Differentiating both sides w.r.t. y, we get
dxdy=ddy{cos ycos(a+y)}=cos(a+y)(−sin y)−cos y(−sin(a+y).1)cos2(a+y) (using quotient rule,ddy(uv)=vddyu−uddyvv2)=sin(a+y)cos y−cos(a+y)sin ycos2(a+y)=sin(a+y−y)cos2(a+y)=sin acos2(a+y) (∴ sin(A−B)=sin A cos B−cos A sin B)∴ dydx=1dxdy=cos2(a+y)sin a. Hence proved.