wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos y=x cos (a+y),with cos a1,prove that dydx=cos2(a+y)sin a.

Open in App
Solution

Given, cos y = x cos(a+y) x=ycos(a+y)

Differentiating both sides w.r.t. y, we get

dxdy=ddy{cos ycos(a+y)}=cos(a+y)(sin y)cos y(sin(a+y).1)cos2(a+y) (using quotient rule,ddy(uv)=vddyuuddyvv2)=sin(a+y)cos ycos(a+y)sin ycos2(a+y)=sin(a+yy)cos2(a+y)=sin acos2(a+y) ( sin(AB)=sin A cos Bcos A sin B) dydx=1dxdy=cos2(a+y)sin a. Hence proved.


flag
Suggest Corrections
thumbs-up
67
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon