If cos2B=cos(A+C)cos(A−C) then
tanA, tanB, tanC are in AP
tanA, tanB, tanC are in GP
tanA, tanB, tanC are in HP
tanA, tanB, tanC are in AGP
cos2B=cos(A+C)cos(A−C)
⇒1−cos2B1+cos2B=cos(A−C)−cos(A+C)cos(A−C)+cos(A+C)
⇒2sin2B2cos2B=2sinAsinC2cosAcosC⇒tanAtanC=tan2B
⇒ tanA, tanB, tanC are in GP
If cos 2 B = cos(A+C)cos(A−C), then tan A, tan B, tan C are in
In a triangle tan A + tan B + tan C =