If cosA+cos2A=1, then sin2A+sin4A=1. Write True or False and justify your answer
Simplify the given expression
Given that
cosA+cos2A=1⇒cosA=1-cos2A...................(1)
We know that
sin2θ+cos2θ=1⇒sin2θ=1-cos2θ
We get
cosA=sin2A....................(2)
∴cos2A=sin4A.........................(3)
Now using equation (2) and (3) in equation (1) we get
sin2A=1-sin4A⇒sin2A+sin4A=1
Hence, sin2A+sin4A=1, so, the given statement is true.