Sum of Trigonometric Ratios in Terms of Their Product
If cos A+cos ...
Question
If cosA+cosB=12 and sinA+sinB=14, prove that: tan(A+B2)=12
Open in App
Solution
We have, cosA+cosB=12 and sinA+sinB=14 Now, sinA+sinBcosA+cosB=1412 [on dividing] ⇒2sin(A+B2)cos(A−B2)2cos(A+B2)cos(A−B2)=12⇒sin(A+B2)cos(A+B2)=12⇒tan(A+B2)=12