If cosA=−2425 and cosB=35, where π<A<3π2 and 3π2<B<2π, find the following:
(i)sin(A+B) (ii)cos(A+B)
We have,
cosA=−2425 and cosB=35
∴sinA=−√1−cos2A
sinB=−√1−cos2B
[∵ In the 3rd and 4th quadrant sinθ is negative]
⇒sinA=−√1−(−2425)2 and
sinB=−√1−(35)2
⇒sinA=−√1−576625 and
sinB=−√925
⇒sinA=−√49625 and
sinB=−√1625
⇒sinA=−725 and sinB=−45
Now,
(i) sin(A+B)=sinAcosB+cosAsinB
=−725×35−2425−(−45)
=−2125+96125
=75125=35
(ii) cos(A+B)=cosAcosB−sinAsinB
=−2425×35−(−725)×(−45)
=−72125−28125
=−72−28125=−100125=−45