We have,
cosA+sinB=m and sinA+sinB=n
Now, m2+n2−2
=(cosA+sinB)2=(sinA+cosB)2−2
=cos2A+sin2B+2cosAsinB+sin2A+cos2B+2sinAcosB−2
=(sin2A+cos2A)+(sin2B+cos2B)+2cosAsinB+2sinAcosB−2
=1+1+2cosAsinB+2sinAcosB−2
=2+2(sinAcosB+cosAsinB)−2
=2(sinAcosB+cosAsinB)
=2sin(A+B)
∴2sin(A+B)=m2+n2−2
Hence proved.