wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosA+sinB=m and sinA+cosB=n, prove that 2sin(A+B)=m2+n22.

Open in App
Solution

We have,
cosA+sinB=m and sinA+sinB=n
Now, m2+n22
=(cosA+sinB)2=(sinA+cosB)22
=cos2A+sin2B+2cosAsinB+sin2A+cos2B+2sinAcosB2
=(sin2A+cos2A)+(sin2B+cos2B)+2cosAsinB+2sinAcosB2
=1+1+2cosAsinB+2sinAcosB2
=2+2(sinAcosB+cosAsinB)2
=2(sinAcosB+cosAsinB)
=2sin(A+B)
2sin(A+B)=m2+n22
Hence proved.

flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon