If cosecA+cot(A)=p then prove that cosA=p2-1p2+1
Prove the given expression
Given,
cosecA+cot(A)=p..........(1)
Now,
cosec2(A)-cot2(A)=1⇒cosec(A)-cot(A)cosec(A)+cot(A)=1⇒cosec(A)-cot(A)p=1⇒cosec(A)-cot(A)=1p...........(2)
Adding (1) and (2) we get
2cosec(A)=p+1p⇒cosec(A)=p2+12p⇒sinA=2pp2+1∵sinθ=1cosec(θ)⇒cosA=1-2pp2+12∵cosθ=1-sin2θ⇒cosA=p4+2p2+1-4p2p2+12⇒cosA=p4-2p2+1p2+12⇒cosA=p2-12p2+12⇒cosA=p2-1p2+1
Hence proved, cosA=p2-1p2+1.