wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosecα+cotα=p, prove that cosα=p21p2+1.

Open in App
Solution

Given cosecα+cotα=p
To prove cosα=p21p2+1
cosecα+cotα=1sinα+cosαsinα=1+cosαsinα
So, p=1+cosαsinα
RHS p21p2+1=(1+cosαsinα)21(1+cosαsinα)2+1
=1+cos2α+2cosαsin2αsin2α1+cos2α+2cosα+sin2αsin2α
=1+cos2α+2cosα1+cos2α1+cos2α+2cosα+1cos2α [sin2α+cos2α=1sin2α1cos2α]
=2cosα(cosα+1)2(cosα+1)
=cosα
LHS = RHS
Hence proved.

1114628_1201846_ans_83629ce1b1484e419ea0c94ee3c5ab12.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression - Sum of n Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon