wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (cosec θ − sin θ) = a3 and (sec θ − cos θ) = b3, prove that a2b2(a2+b2)=1.

Open in App
Solution

We have (cosecθ-sinθ)=a3=> a3=(1sinθsinθ)=> a3=(1sin2θ)sinθ=cos2θsinθa=cos23θsin13θAgain, (secθcosθ)=b3=>b3=(1cosθcosθ)=(1cos2θ)cosθ=sin2θcosθ b=sin23θcos13θNow, LHS=a2b2(a2+b2) =a4b2+a2b4=a3(ab2)+(a2b)b3=cos2θsinθ×cos23θsin13θ×sin43θcos23θ+cos43θsin23θ×sin23θcos13θ×sin2θcosθ =cos2θsinθ×sinθ+cosθ×sin2θcosθ=cos2θ+sin2θ=1= RHSHence proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Standard angle(30,60,90)
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon