1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Value of Standard Angle(30,60,90)
If cosecθ-sin...
Question
If (cosec θ − sin θ) = a
3
and (sec θ − cos θ) = b
3
, prove that
a
2
b
2
(
a
2
+
b
2
)
=
1
.
Open in App
Solution
We have
(
cos
ec
θ
-sin
θ
)
=
a
3
=>
a
3
=
(
1
sin
θ
−
sin
θ
)
=>
a
3
=
(
1
−
sin
2
θ
)
sin
θ
=
cos
2
θ
sin
θ
∴
a
=
cos
2
3
θ
sin
1
3
θ
Again,
(
sec
θ
−
cos
θ
)
=
b
3
=
>
b
3
=
(
1
cos
θ
−
cos
θ
)
=
(
1
−
cos
2
θ
)
cos
θ
=
sin
2
θ
cos
θ
∴
b
=
sin
2
3
θ
cos
1
3
θ
Now, LHS=
a
2
b
2
(
a
2
+
b
2
)
=
a
4
b
2
+
a
2
b
4
=
a
3
(
a
b
2
)
+
(
a
2
b
)
b
3
=
cos
2
θ
sin
θ
×
cos
2
3
θ
sin
1
3
θ
×
sin
4
3
θ
cos
2
3
θ
+
cos
4
3
θ
sin
2
3
θ
×
sin
2
3
θ
cos
1
3
θ
×
sin
2
θ
cos
θ
=
cos
2
θ
sin
θ
×
sin
θ
+
cos
θ
×
sin
2
θ
cos
θ
=cos
2
θ
+
sin
2
θ
=
1
=
RHS
Hence proved
.
Suggest Corrections
1
Similar questions
Q.
Prove the following trigonometric identities.
If cosec θ − sin θ = a
3
, sec θ − cos θ = b
3
, prove that a
2
b
2
(a
2
+ b
2
) = 1