wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cosec θ-sin θ=a3, sec θ-cos θ=b3, then prove that a2 b2 a2+b2=1

Open in App
Solution

cosec θ-sin θ=a31sin θ-sin =a31-sin2θsin θ=a3cos2θsin θ=a3 a=cos2θsin θ13 ....(i)Also, sec θ-cos θ=b31cos θ-cos =b31-cos2θcos θ=b3sin2θcos θ=b3 b= sin2θcos θ13 .....(ii)Now, LHS=a2b2a2+b2=ab2a2+b2=cos2θsin θ13sin2θcos θ132 cos2θsin θ132+sin2θcos θ132=sin θ cos θ23 cos2θ23sin θ23+sin2θ23cos θ23=sin θ cos θ23cos3θ23+sin3θ23sin θ23cos θ23=sin θ cos θ23cos2θ+sin2θsin θ cos θ23=1=RHS

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Evaluation of Determinants
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon