2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Evaluation of a Determinant
If cosecθ-sin...
Question
If
cosec
θ
-
sin
θ
=
a
3
,
sec
θ
-
cos
θ
=
b
3
, then prove that
a
2
b
2
a
2
+
b
2
=
1
Open in App
Solution
cosec
θ
-
sin
θ
=
a
3
∴
1
sin
θ
-
sin
=
a
3
⇒
1
-
sin
2
θ
sin
θ
=
a
3
⇒
cos
2
θ
sin
θ
=
a
3
⇒
a
=
cos
2
θ
sin
θ
1
3
.
.
.
.
(
i
)
Also
,
sec
θ
-
cos
θ
=
b
3
⇒
1
cos
θ
-
cos
=
b
3
⇒
1
-
cos
2
θ
cos
θ
=
b
3
⇒
sin
2
θ
cos
θ
=
b
3
⇒
b
=
sin
2
θ
cos
θ
1
3
.
.
.
.
.
(
ii
)
Now
,
LHS
=
a
2
b
2
a
2
+
b
2
=
a
b
2
a
2
+
b
2
=
cos
2
θ
sin
θ
1
3
sin
2
θ
cos
θ
1
3
2
cos
2
θ
sin
θ
1
3
2
+
sin
2
θ
cos
θ
1
3
2
=
sin
θ
cos
θ
2
3
cos
2
θ
2
3
sin
θ
2
3
+
sin
2
θ
2
3
cos
θ
2
3
=
sin
θ
cos
θ
2
3
cos
3
θ
2
3
+
sin
3
θ
2
3
sin
θ
2
3
cos
θ
2
3
=
sin
θ
cos
θ
2
3
cos
2
θ
+
sin
2
θ
sin
θ
cos
θ
2
3
=
1
=
RHS
Suggest Corrections
1
Similar questions
Q.
Prove the following trigonometric identities.
If cosec θ − sin θ = a
3
, sec θ − cos θ = b
3
, prove that a
2
b
2
(a
2
+ b
2
) = 1