If
cosecθ−cotθ=12,0<θ<90∘,
then cosθ
is equal to
35
Given:
cosecθ−cotθ=12.....(1)
Using identity
cosec2θ−cot2θ=1
(cosecθ+cotθ)(cosecθ−cotθ)=1
Using (1) we can write,
(cosecθ+cotθ)(12)=1
(cosecθ+cotθ)=2 ------Eq (2)
On adding (1) and (2),
2cosecθ=12+2=52⇒cosecθ=54
⇒sinθ=45⇒sin2θ=1625
⇒1−cos2θ=1625⇒cos2θ=1−1625=925
⇒cosθ=±35
∵0<θ<90∘
∴cosθ=35